An h-r Moving Mesh Method for One-Dimensional Time-Dependent PDEs
نویسندگان
چکیده
We propose a new moving mesh method suitable for solving timedependent partial differential equations (PDEs) in R which have fine scale solution structures that develop or dissipate. A key feature of the method is its ability to add or remove mesh nodes in a smooth manner and that it is consistent with r-refinement schemes. Central to our approach is an implicit representation of a Lagrangian mesh as iso-contours of a level set function. The implicitly represented mesh is evolved by updating the underlying level set function using a derived level set moving mesh partial differential equation (LMPDE). The discretized LMPDE evolves the level set function in a manner that quasi-equidistributes a specified monitor function. Beneficial attributes of the method are that this construction guarantees that the mesh does not tangle, and that connectivity is retained. Numerical examples are provided to demonstrate the effectiveness of our approach.
منابع مشابه
A two-dimensional moving finite element method with local refinement based on a posteriori error estimates
In this paper, we consider the numerical solution of time-dependent PDEs using a finite element method based upon rh-adaptivity. An adaptive horizontal method of lines strategy equipped with a posteriori error estimates to control the discretization through variable time steps and spatial grid adaptations is used. Our approach combines an r-refinement method based upon solving so-called moving ...
متن کاملMoving Mesh Strategy Based on a Gradient Flow Equation for Two-Dimensional Problems
In this paper we introduce a moving mesh method for solving PDEs in two dimensions. It can be viewed as a higher-dimensional generalization of the moving mesh PDE (MMPDE) strategy developed in our previous work for one-dimensional problems [W. Huang, Y. Ren, and R. D. Russell, SIAM J. Numer. Anal., 31 (1994), pp. 709–730]. The MMPDE is derived from a gradient flow equation which arises using a ...
متن کاملA Schwarz Waveform Moving Mesh Method
An r-refinement (moving mesh) method is considered for solving time dependent partial differential equations (PDEs). The resulting coupled system, consisting of the physical PDE and a moving mesh PDE, is solved by a Schwarz waveform relaxation method. In particular, the computational space-time domain is decomposed into overlapping subdomains and the solution obtained by iteratively solving the...
متن کاملMoving Mesh Strategy Based upon a Heat Flow Equation for Two Dimensional Problems
In this paper we introduce a moving mesh method for solving PDEs in two dimensions. It can be viewed as a higher dimensional generalization of the moving mesh PDE (MMPDE) strategy developed in our previous work 24] for one dimensional problems. The MMPDE is derived from a heat ow equation which arises using a mesh adaptation functional in turn motivated from the theory of harmonic maps. Geometr...
متن کاملObservations on an Adaptive Moving Grid Method for One-dimensional Systems of Partial Differential Equations *
Recently a scheme has been proposed for choosing a moving mesh based on minimizing the time rate of change of the solution in the moving coordinates for one-dimensional systems of PDEs. In this paper we show how to apply this idea to systems where the time derivatives cannot be solved for explicitly, writing the moving mesh equations in an implicit form. We give a geometrical interpretation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012